On Non-linear Markov Chain Monte Carlo via Self-interacting Approximations
نویسنده
چکیده
Let P(E) be the space of probability measures on a measurable space (E, E). In this paper we introduce a class of non-linear Markov Chain Monte Carlo (MCMC) methods for simulating from a probability measure π ∈ P(E). Non-linear Markov kernels (e.g. Del Moral (2004); Del Moral & Doucet (2003)) K : P(E) × E → P(E) can be constructed to admit π as an invariant distribution and have superior mixing properties to ordinary (linear) MCMC kernels. However, such non-linear kernels cannot be simulated exactly, so, in the spirit of particle approximations of Feynman-Kac formulae (Del Moral 2004), we construct approximations of the non-linear kernels via Self-Interacting Markov Chains (Del Moral & Miclo 2004) (SIMC). We present several non-linear kernels and demonstrate that, under some conditions, the associated self-interacting approximations exhibit a strong law of large numbers; our proof technique is via the Poisson equation and Foster-Lyapunov conditions. We investigate the performance of our approximations with some simulations, combining the methodology with population-based Markov chain Monte Carlo (e.g. Jasra et al. (2007)). We also provide a comparison of our methods with sequential Monte Carlo samplers (Del Moral et al. 2006) when applied to a continuous-time stochastic volatility model.
منابع مشابه
Non-linear Markov Chain Monte Carlo
In this paper we introduce a class of non-linear Markov Chain Monte Carlo (MCMC) methods for simulating from a probability measure π. Non-linear Markov kernels (e.g. Del Moral (2004)) can be constructed to admit π as an invariant distribution and have typically superior mixing properties to ordinary (linear) MCMC kernels. However, such non-linear kernels often cannot be simulated exactly, so, i...
متن کاملPosterior inference on parameters of stochastic differential equations via non-linear Gaussian filtering and adaptive MCMC
This article is concerned with Bayesian estimation of parameters in non-linear multivariate stochastic differential equation (SDE) models occurring, for example, in physics, engineering, and financial applications. In particular, we study the use of adaptive Markov chain Monte Carlo (AMCMC) based numerical integration methods with nonlinear Kalman-type approximate Gaussian filters for parameter...
متن کاملApproximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider app...
متن کاملInteracting Markov Chain Monte Carlo Methods For Solving Nonlinear Measure-Valued Equations
We present a new interacting Markov chain Monte Carlo methodology for solving numerically discrete-time measure-valued equations. The associated stochastic processes belong to the class of self-interacting Markov chains. In contrast to traditional Markov chains, their time evolution may depend on the occupation measure of the past values. This general methodology allows us to provide a natural ...
متن کاملApproximate Bayesian Inference for Latent Gaussian Models Using Integrated Nested Laplace Approximations
Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalised) linear models, (generalised) additive models, smoothing-spline models, state-space models, semiparametric regression, spatial and spatio-temporal models, log-Gaussian Cox-processes, and geostatistical models. In this paper we consider app...
متن کامل